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We consider lattice classical ferromagnetic spin systems at high temperature
(;<<1) with nearest neighbor interactions and even single-spin distributions
(ssd). Associated with each system is an imaginary time lattice quantum field
theory. It is known that there is a particle of mass m$ &ln ; in the energy-
momentum spectrum. If :#(s4) &3(s2) 2<0, where (sk) is the k th moment
of the ssd, and ; is sufficiently small, we show that in the two-particle subspace
there is no mass spectrum up to 2m. For :>0 we show that the only mass
spectrum in (m, 2m) is a bound state of mass mb=2m+ln(1&#)+O(;), where
#=:(:+2(s2) 2)&1. A bound on the decay of the kernel of a Bethe�Salpeter
equation is obtained and used to prove these results.

KEY WORDS: Transfer matrix spectrum; decay of correlations; bound
states; high-temperature ferromagnetic spin systems; Gaussian domination
inequalities.

1. INTRODUCTION AND RESULTS

Consider the lattice imaginary time quantum field theory (qft) associated
with lattice classical ferromagnetic spin systems at high temperature
(;<<1) (see refs. 1 and 2). We only treat spin systems with nearest
neighbor interactions and even single spin distributions (ssd). It is known
that the energy-momentum (e-m) spectrum has a particle of mass
mt&ln ; with an isolated dispersion curve (see refs. 3 and 4). Recently
using a Bethe�Salpeter (B�S) equation we have shown in refs. 5 and 6 that
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a bound state exists if :#(s4)&3(s2) 2>0 where (sk) is the k th
moment of the ssd. The bound state mass is given by mb=2m+ln(1&#)+
O(;) where #=:(:+2(s2) 2)&1. A crucial input is the decay of the kernel
of the B�S equation. In this article we provide the proof of the bounds on
the kernel using a decoupling of hyperplane method (see ref. 4). In addition
if :<0 and (s2) 2{(s4) we show that in the two-particle subspace there
is no mass spectrum up to the two-particle threshold 2m. Also for :>0 we
show that the only mass spectrum in (m, 2m) is the bound state mass mb .

Results analogous to ours for two-dimensional qft models in the
Euclidean formulation have been obtained in refs. 7 and 8 and we use
similar methods.

We now turn to a more precise description of the class of models we
treat and of our results.

We let s(x) # R, x=(x0 , x� ) # 4/Zd denote the spin variable at the
site x of the finite lattice 4. For the generating function Z4(J ) we take
Z4(J )=� e(J, s)eS(s) d+(s); (J, s)=�x J(x) s(x) and the interacting action
S(s) is S(s)=; �$ s(x) s( y) where �$ denotes the sum over the unordered
set of nearest neighbor sites [x, y]. d+(s)=>x e&V(s(x)) ds(x) and we only
consider the case of even ssd. i.e., V(s)=V(&s). V(s) is bounded from
below and increases at infinity at least quadratically. Expectations of the
probability measure exp[S(s)] d+(s)� normalization are denoted by ( } ) 4 .
Truncated cf 's are given by local derivatives with respect to J 's of ln Z4(J )
at J=0.

By the polymer expansion (see ref. 4) the thermodynamic limit (4 � Zd )
of the cf 's exist. The limiting cf 's are denoted by ( } ) and are translation
invariant. The truncated cf 's have exponential tree decay with a rate of at
least (1&=) |ln ;| where = � 0 as ; � 0.

For a class of models defined by imposing conditions on V in the ssd
Gaussian domination inequalities for correlation functions (cf ) (see refs. 1,
9�11) have been proven which exclude bound state spectrum for ;�0.
Taking coincident points and setting ;=0 these cf inequalities become
inequalities on the moments of the ssd given by (s2n) �(2n&1)(2n&3)
} } } (3)(1)(s2) n. For small ; our result, with the exception of the Ising
model, extends to a wider class of models than those of refs. 4, 9�11 as the
conditions we impose are (s4)&3(s2)2<0 and (s2) 2<(s4). Note that
(s2) 2�(s4) by the Cauchy�Schwarz inequality.

Associated with the model is an imaginary discrete time lattice quan-
tum field theory (qft). The qft is constructed in the standard way (see
refs. 1 and 2). Taking the x0 direction as time the construction provides the
quantum mechanical Hilbert space H with inner product ( } , } ), commuting
self-adjoint energy-momentum (em) operators H�0, P9 , the time-zero field
operator ŝ(x), x=(0, x� ) and the vacuum vector 0. The relation of the
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Hilbert space objects to the cf 's is given by the Feynman�Kac (F�K)
formula, i.e., setting ŝ(0)= ŝ, xk=(tk , x� k), with t1�t2� } } } �tn ,

(0, ŝe&H(t2&t1)e iP9 } (x� 2&x� 1)ŝe&H(t3&t2)eiP9 } (x� 3&x� 2)ŝ } } } e&H(tn&tn&1)eiP9 } (x� n&x� n&1)ŝ0)

=(s(x1) } } } s(xn)) (1.1)

We will state our main result in terms of the spectrum of H, P9 but first
we give some known or easily obtained results on the e-m spectrum which
we need here. We let (E, p� ), E�0, p� # Td&1 (the d&1-dimensional torus)
denote the spectral parameters associated with (H, P9 ) and refer to the
spectral points (E, p� =09 ) as the mass spectrum.

The one-particle states are generated by vectors of the form ŝ(x� ) 0
and by the methods of ref. 4 have mass mtln ; for ; small and an isolated
real analytic dispersion curve w( p� )�w(09 )#m. The e-m dispersion curve is
determined as the zero of 1� ( p0=iw( p� ), p� ) where 1� ( p) is the Fourier
transform of 1 (x, y). Throughout this paper we define the Fourier trans-
form without factors of 2?. 1 (x, y) is minus the convolution inverse of the
two-point function (s(x) s( y)) =S(x, y). To lowest order in ;

w( p� )=&ln ;&ln (s2)&2;(d&1)(s2)+;(s2) 2 :
d&1

i=1

(1&cos pi )+O(;2)

Furthermore there is no spectrum up to &(2&=) ln ;, =(;)>0, and
=(;) a 0 as ; a 0. This is known as the upper mass gap property and implies
the Orstein�Zernike behavior for the two-point function (see ref. 3).

To determine the mass spectrum (e-m spectrum at p� =0) in the interval
(m, 2m) we consider the states in the subspace generated by ŝ(x� ) ŝ( y� ) 0.
The truncated 4-point function related to this state (after subtracting out
the vacuum contribution) is

D(x1x2 ; x3 x4)=(s(x1) s(x2) s(x3) s(x4)) &(s(x1) s(x2))(s(x3) s(x4))

where xi=(ti , x� i ). By translation invariance D depends only on the dif-
ference variables. We now introduce the newly-devised relative coordinates
(!, ', {) which are the substitute for the center of mass and relative coor-
dinates used in the continuum. Let !=x2&x1 , '=x4&x3 , {=x3&x2

and we denote by p, q, k the respective Fourier transform variables.
Writing !=(!0 , !9 ), etc. it follows that if !0='0=0 D(!, ', {)=(%(&!9 ),
e&H |{0 |eiP9 {� %('� )) where %('� )=ŝ(09 ) ŝ('� ) 0&(0, ŝ(09 ) ŝ('� ) 0) 0. A calcula-
tion shows, with f : Zd&1 � C and letting D� (!9 , '� , k) denote the Fourier
transform in the { variable only,

1267Decay of Bethe�Salpeter Kernel



|| f� (!9 ) D� (!9 , '� , k) f ('� ) d!9 d'�

=(2?)d&1 |
�

0
|

Td&1

sinh E
cosh E&cos k0

d(%( f ), E(E, k9 ) %( f )) (1.2)

where E(E, q� ) is the spectral family associated with H, P9 and T d&1 is the
d&1-dimensional torus, %( f )=�x� f (x� ) %(&x� ), x� # Zd&1. The singularities
in k0 , for k9 fixed, of the left side are points in the e-m spectrum by con-
sidering the right side.

Our first main result we state as

Theorem 1. For ;>0 and sufficiently small and in the two-particle
subspace

(a) for :<0 there is no mass spectrum in (0, 2m),

(b) for :>0 the mass spectrum in (0, 2m) consists of the single point
mb=2m+ln(1&#)+O(;).

To prove this result we introduce a B�S equation which in operator
form is

D=D0+DKD0 , K=D&1
0 &D&1

or in terms of kernels is, with x10=x20 , x30=x40 ,

D(x1x2 x3x4)=D0(x1 x2x3x4)+| D(x1x2 y1 y2) $( y10& y20)

_K( y1 y2 y3 y4) $( y30& y40) D0( y1 y2x3 x4) dy1 dy2 dy3 dy4

(1.3)

where

D0(x1 x2x3x4)=(s(x1) s(x3))(s(x2) s(x4)) +(s(x1) s(x4))(s(x2) s(x3))

and we use an integral notation for lattice sums and the Kronecker delta.
K is called the B�S kernel. D, D0 and K are considered as matrix operators
acting in sl2(A), the symmetric subspace of l2(A), where A=[(x1 , x2) #
Z2d | x10=x20]. Crucial for the proof of Theorem I and for the proof of the
bound state existence results of ref. 6 is a bound on K which is our second
main result given by
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Theorem II. For ; sufficiently small, with x10=x20 , x30=x40 ,

|K(x1x2x3x4)|�c1 } ;
c2 }

3 |x30&x20 |+1�2[&x� 1+x� 2&x� 3&x� 4&+&x� 2&x� 1&+&x� 4&x� 3&]

where &x� &=�d&1
k=1 |xk |.

We give some intuition about the result and the method of proof in
the context of lattice Schroedinger operators in l2(Zd&1). Consider the B�S
equation in relative coordinates. The Fourier transforms in the time
variable with spectral parameter k0=i/, /=2m+z, Re z<0, is, roughly
speaking, a two-body Schroedinger resolvent equation (in l2(Zd&1))

(H&z)&1=(H0&z)&1&(H&z)&1 V(H0&z)&1

where H0r;2 with &2 the lattice Laplacian. V=*$+W where $ is the
delta function potential and *>0 so we have a repulsive potential. W is
not local but has exponentially decaying kernel and is of order ;2. Now the
kernel of (H$&z)&1 where H$=H0+*$ can be obtained explicitly and
doesn't blow up as Re z A 0. Taking (H$&z)&1 as the unperturbed resolvent
one shows that ( f, (H&z)&1 f ) has a convergent Neumann series
uniformly in Re z<0 for f in a dense set. In the attractive case (*<0) there
is an isolated point in the spectrum corresponding to a multiplicity one
eigenvalue at z=zb<0 with isolation radius b but the Neumann series still
converges for zb+b<z<0.

We now describe the organization of this paper. In Section II we prove
Theorem II and in Section III the proof of Theorem I is given. Brief proofs
will be given as the arguments that we use have previously appeared in
many places (see ref. 4).

II. DECAY OF THE BETHE�SALPETER KERNEL

Here we use a decoupling of hyperplane method (see refs. 4 and 6) and
prove the decay bound on K given in Theorem II. It is to be understood
that we carry out the analysis in a finite volume. We will obtain bounds on
cf's which are independent of the volume. For the bonds in the Boltzman
factor between the hyperplanes xk=q and xk=q+1, k=0, 1,..., d&1
replace ; by the complex parameter wk

q . For ;0 small by the polymer
expansion the cf are jointly analytic in ; and the wk

q 's for |;|, |wk
q |�;0 . By

setting wk
q=;�;0 for all q and k we recover the physical translationally

invariant cf. For a matrix operator M(x, y) in l2 the l2 operator norm is
denoted by |M | which is bounded by [supy[�x |M(x, y)|]]1�2 } [supx

[�y |M(x, y)|]]1�2. Recall that we are considering D and D0 as matrix
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operators in sl2(A). By the exponential decay of the two-point function we
see that D0 has finite norm. D can be written as D=S T

4 +D0 where S T
4 is

the truncated four-point function which has exponential tree decay. Thus D
also has finite norm. We now consider the inverses of D0 and D. If M is
D0 or D we decompose M as M=Md+Mn where Md is diagonal and Mn

is non-diagonal. The inverse M&1 is defined by the Neumann series M&1

=M &1
d ��

k=0 (&1)k [MnM &1
d ]k. Expanding D0d and Dd in ; shows that

D0d and Dd are invertible with bounds

|D&1
0d |�(s2) &2, |D&1

d |�max[2((s4)&(s2) 2)&1, (s2) &2]

As |D0n |�c |;| and |Dn |�c |;| 1�2 we see that D&1, D&1
0 and thus also

K=D&1
0 &D&1 exist as bounded operators on sl2 .

First consider the decay of K in the time direction. We will need w0
q

derivatives of D and D0 which we give in the lemma below. We set e0=e
and for notational simplicity drop the superscript on w0

q and write
�#���wq . We have

Lemma II.1. For x0
1=x0

2�q<x0
3=x0

4 ,

D(x1x2x3x4) |wq=0=0, �D(x1 x2x3x4) | wq=0=0

�2D(x1 x2x3 x4) |wq=0={ :
z0

1=z0
2=q

D(x1 x2z1 z2) D(z1+ez2+ex3 x4)= }wq=0

and the same for D0(x1x2x3 x4).
For the proof of the lemma and for other derivative calculations we

refer the reader to refs. 4 and 6 where similar calculations are carried out.
Let H p

1 /sl2 be generated by [e(x, y) : x0= y0�p] and H p
2 be generated by

[e(x, y) : x0= y0>p] so that sl2=H p
1 �H p

2 . By Lemma II.1 D0 and D at
wq=0 leave H q

i , i=1, 2 invariant and the same holds for D&1
0 and D&1 at

wq=0. Concerning the wq derivatives of K we have

Lemma II.2. For x0
1=x0

2�q<x0
3=x0

4

(a) �K(x1x2x3 x4) |wq=0=0,

(b) �2K(x1 x2x3 x4) | wq=0=0.

Proof. (a) �K=&D&1
0 �D0 D&1

0 +D&1 �D D&1 and using Lem-
ma II.1 the result follows.

(b) �2K=2D&1
0 �D0 D&1

0 �D0 D&1
0 &D&1

0 �2D0 D&1
0 &2D&1 �D D&1

�D. D&1+D&1 �2D D&1#k1+k2+k3+k4 .
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At wq=0 k1 and k3 leave H q
i , i=1, 2 invariant and therefore are zero.

Using Lemma II.1 for �2D0 and �2D at wq=0 in k2 and k4 shows that
k2+k4=0.

Using Lemma II.2, joint analyticity in [wq] and Cauchy bounds
for wq derivatives we have the bound |K(x1 x2 x3x4)|�c1 |;�c2 | 3 |x0

3&x0
2 |,

|x0
3&x0

2 |�1.
We now turn to the bound in the spatial directions. We can consider

each direction independently and the same analysis applies to each direc-
tion. Thus, without loss of generality, let us consider the 1-direction. There
are 24 regions to be considered, one for each order of x$1 , x$2 , x$3 , x$4 , where
the superscript refers to the 1st component. By the x1 W x2 , x3 W x4 ,
x1 , x2 W x3 , x4 invariance of K(x1x2x3x4) (which follows from the
invariance of D0 and D) the 24 regions partition into 3 groups of 8 regions.
For each of the 3 groups the bound we obtain will also be invariant under
the above substitutions.

Let

L p
1 =span of [e(x, y) : x$, y$�p]

L p
21=span of [e(x, y) : x$�\< y$ or y$�p<x$]

L p
31=span of [e(x, y) : x$, y$>p]

Consider first x$1�x$2�x$3�x$4 . If x$1�p<x$2�x$3�x$4 or x$1�x$2�p<
x$3�x$4 then for wp=0 D0=D=0. Thus wp=0 D and D0 leave L p

3

invariant. Likewise if x$1�x$2�x$3�p<x$4 D0=D=0 at wp=0. This
implies ( f, D0 |wp=0 g)=0 for all f # L p

1 and g # L p
2 . If f # L p

3 then since
D0 |wp=0 is symmetric ( f, D0 | wp=0 g)=(D� 0 |wp=0 f, g)=0. Thus D0 | wp=0

leaves L p
1 invariant. The same conclusion holds for D |wp=0 and there-

fore also for D&1
0 | wp=0 and D&1 |wp=0 . Thus K |wp=0 leaves each L p

i

invariant which for x$1�x$2�x$3�x$4 implies the bound |K(x1x2 x3x4)|�
c1 |;�c2 | (x$2&x$1)+(x$3&x$2)+(x$4&x$3). Since

1
2 |x$1+x$2&x$3&x$4 |+ 1

2 |x$2&x$1|+ 1
2 |x$4&x$3 |

�|x$2&x$1|+|x$3&x$2 |+|x$4&x$3 |

we have

|K(x1x2x3x4)|�c1 } ;
c2 }

1�2[ |x$1+x$2&x$3&x$4|+|x$2&x$1|+|x$4&x$3|]

(2.1)

which also holds in the symmetry related regions x$2�x$1�x$3�x$4 ;
x$1�x$2�x$4�x$3 ; x$2�x$1�x$4�x$3 ; x$3�x$4�x$1�x$2 ; x$4�x$3�x$1�x$2 ;
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x$3�x$4�x$2�x$1 and x$4�x$3�x$2�x$1 . For the region x$1�x$3�x$2�x$4
if x$1�p<x$3�x$2�x$4 then K(x1x2 x3x4) |wq=0=0 as e(x1x2) # L p

2 and
e(x3x4) # L p

3 . If x$1�x$3�p<x$2�x$4 then

D0 |wp=0=(s(x1) s(x3))(s(x2) s(x4)) | wp=0=D | wp=0

which means for the restrictions to L p
2 D0 |wp=0=D |wp=0 and thus

K |wp=0=0. If x$1�x$3�x$2�p<x$4 then K |wp=0=0 as e(x1x2) # L p
1 and

e(x3x4) # L p
2 . These considerations lead to the bound |K(x1x2x3 x4)|�

c1 |;�c2 | (x$3&x$1)+(x$2&x$3)+(x$4&x$2) and since 1
2 |x$1+x$2&x$3&x$4 |+ 1

2 |x$2&x$1|
+ 1

2 |x$4&x$3 |�|x$3&x$1|+|x$2&x$3 |+|x$4&x$2 | we again get the bound (2.1)
which extends to the other 7 symmetry related regions. Finally the region
x$1�x$3�x$4�x$2 is treated in a similar way to the first group of regions with
the resulting bound |K(x1x2x3x4 |�c1 |;�c2 | (x$3&x$1)+(x$4&x$3)+(x$2&x$4) and as

1
2 |x$1+x$2&x$3&x$4 |+ 1

2 |x$2&x$1|+ 1
2 |x$4&x$3 |

�|x$3&x$1|+|x$4&x$3 |+|x$2&x$1|

the bound (2.1) holds and extends to the other 7 symmetry related regions.
Repeating the analysis for each of the other spatial directions and putting
it together with the temporal bound gives us the bound of the theorem.

III. BOUND STATES

Here we prove Theorem I. Concerning the proof of (b) for :>0 it
has been shown in ref. 6 that there is a bound state with mass mb and that
this is the only point in the spectrum in (0, mb+$#) in the two-particle
subspace for $ sufficiently small. By an easy modification of the proof of
(a) we give a simple short proof of the absence of mass spectrum in
[mb+$#, 2m). We now turn to the proof of (a). Referring to Eq. (1.2) we
show the absence of mass spectrum in (0, 2m) by showing there is no
singularity in / # (0, 2m), k=(k0=i/, 09 )#k0 of

( f, D� f )2#| f� (!9 ) D� (!9 , '� , k0) f ('� ) d!9 d'� (3.1)

In Eq. (3.1) 7 denotes the Fourier transform of D(!9 , '� , {) in the { variable
only and f (!9 ) is taken to be in the even subspace of the weighted l2 space

l$={ f : Zd&1 � C } | | f (!9 )|2 e$ |!9 | d!9 <�, $=
m
8 =
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For functions and operators in this space we use a subscript $ for their
norms.

We introduce a B�S equation by D=D0+DKD0 or in terms of
kernels, with x10=x20 , x30=x40 ,

D(x1x2x3x4)=D0(x1 x2x3 x4)+| D(x1x2 y1 y2) $( y10& y20)

_K( y1 y2 y3 y4) $( y30& y40) D0( y3 y4x3x4) dy1 dy2 dy3 dy4

(3.2)

where we use a continuum notation for lattice sums and the Kronecker
delta. Using the invariance of D, D0 and consequently also K under the
substitutions (x1x2 x3 x4) � (x2x1x3x4) and (x1 x2 x3x4) � (x1x2 x4x3) we
can write the B�S equation in relative coordinates as, without changing
notation for functions written in relative coordinates,

D(!9 , '� , {)=D0(!9 , '� , {)+| d!9 $ d'� $ d{$ d{" D(!9 , !9 $, {$)

_K(&!9 $, &'� $, {&{$&{") D0('� $, '� , {) (3.3)

Upon taking the Fourier transform of Eq. (3.3) in the { variable only we
obtain

D� (!9 , '� , k)=D� 0(!9 , '� , k)+| d!9 $ d'� $ D� (!9 , !9 $, k) K� (&!9 $, &'� $, k) D� 0('� $, '� , k)

(3.4)

and for k=k0, K� (&!9 , &'� , k0)=K� (!9 , '� , k0).
In terms of relative coordinates Theorem II furnishes us with the

bound

|K(!9 , '� , {)|�c1 |;�c2 | 3 |{0|+1�2[ |2{� +!9 +'� |+|!9 |+|'� | ] (3.5)

For k=k0 we write Eq. (3.4) in operator form as

D� (k0)=D� 0(k0)+D� (k0) K� (k0) D� 0(k0) (3.6)

to control D� (k0) in Eq. (3.6) we first decompose K as K=L+M where

L(!9 , '� , {)=\$(!9 ) $('� ) $({)
(3.7)

\=(2(s2) 2)&1 ((s4) &(s2) 2)&1 ((s4) &3(s2) 2)

1273Decay of Bethe�Salpeter Kernel



and we assume (s4)>(s2) 2 and \<0. L, which is local and ; indepen-
dent, is called the ladder approximation and is obtained by expanding K
in powers of ; and keeping only the constant term. Next we define

D� $0=D� 0(I&L� D� 0)&1 (3.8)

We can explicitly solve for the kernel of D� $0 obtaining

D� $0(!9 , '� , k0)=D� 0(!9 , '� , k0)+\(1&\D� 0(09 , 09 , k0))&1 D� 0(!9 , 09 , k0) D� 0(09 , '� , k0)

(3.9)

and in terms of D� $0

D� =D� $0(I&M� D� $0)&1 (3.10)

We treat D� as well as D� $0 as operators from l$ � l&$ and K� : l&$ � l$

so that Eq. (3.1) can be written as ( f, D� f ) , the evaluation of the linear
functional D� f acting on f, where f # l$ and D� f is in the dual space l&$ . For
D� $0 : l$ � l&$ the norm is equal to the l2 norm of (D� $0)$ where (D� $0)$ has the
kernel e&$ |!� |(D� $0)(!9 , '� , k0) e&$ |'� |.

For sufficiently small ; and for / # (0, 2m) we show that D� exists by
showing that the l$ � l&$ norm of D� $0 is bounded and that the l$ norm
of M� D� $0 is less than one which in turn depends on bounds on D� $0 and
improved bounds on M for some special small distance points.

In order to bound D� $0 of Eq. (3.9) we use a representation for D0

obtained by using the spectral representation of the two-point function
given by, for small ;,

S(x)=|
�

0
|

Td&1

e&E |x0 |eip� } x� d_p� (E ) dp� (3.11)

where

d_p� (E )=Z( p� , ;) $(E&w( p� )) dE+d_̂p� (E )

w( p� )=&ln ;&ln (s2) +r(;, p� )

d_p� (E )=d_&p� (E ) as well as d_̂p� (E )=d_̂&p� (E ) are positive measures and
Z( p� , ;)=(s2)�(2?)d&1+O(;). d_p� (E ) has support in ((3&=$) m, �)
where =$ a 0 as ; a 0; r( p� , ;)=O(;) is jointly analytic in ; and p� . These
results are obtained by adapting the work of refs. 2 and 4. Furthermore we
have

Lemma 3.1. _̂p� (R+)#��
0 d_̂p� (E )=O(;).
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Proof. Using the spectral representation for S(x0=0, x� ) and taking
the spatial Fourier transform gives

S(x=0)+ :
|x� |�1

e&iq� } x� S(0, x� )=(2?)d&1 |
�

0
d_q� (E )

=(2?)d&1 Z(q� , ;)+(2?)d&1 |
�

0
d_̂q� (E )

As S(x=0)=(s2)+O(;2), |S(0, x� )|�c1 |;�c2 | |x� | and Z(q� , ;)=(s2)�
(2?)d&1+O(;) the result follows.

Using Eq. (3.11) we obtain a representation for D� 0(!9 , '� , k0)=
�{ D0(!9 , '� , {) e&ik0{0, where D� 0(!9 , '� , {)=S({+!9 ) S({+'� )+S({) S({+!9 +'� ),
given by

D� 0(!9 , '� , k0)=2(2?)d&1 |
�

0
|

�

0
|

Td&1

sinh(E+E$)
cosh(E+E$)&cosh /

_cos p� } '� cos p� } !9 d_p� (E ) d_p� (E$) dp� (3.12)

Concerning the bounds on D� $0 we write

D� $0(!9 , '� , k0)=D� $0a(!9 , '� , k0)+D� $0b(!9 , '� , k0)

where

D� $0a(!9 , '� , k0)=(1&\D� 0(09 , 09 , k0))&1 D� 0(!9 , '� , k0)

D� $0b(!9 , '� , k0)=&\(1&\D� 0(09 , 09 , k0))&1 [D� 0(!9 , '� , k0) D� 0(09 , 09 , k0)

&D� 0(!9 , 09 , k0) D� 0(09 , '� , k0)]

and we have

Lemma 3.2. For small ; and uniformly for / # (0, 2m)

(a) |D� $0a(!9 , '� , k0)|�|\|&1,

(b) |D� $0b(!9 , '� , k0)|�O(1)[1&$(!9 )][1&$('� )][1+;&1 |'� |2],

(c) |(D� $0)$ |2�c;&1.

Proof. (a) From Eq. (3.12) |D� 0(!� , '� , k0)|�D� 0(09 , 09 , k0) and as \<0
the results follows. (b) Letting 8(!9 , '� , k0)#D� 0(!9 , '� , k0) D� 0(09 , 09 , k0)&
D� 0(!� , 09 , k0) D� 0(09 , '� , k0) and using Eq. (3.12) we have
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|8(!9 , '� , k0)|�4(2?)2(d&1) | } } } | _ sinh(E+E$)
cosh(E+E$)&cosh /&

__ sinh(F+F $)
cosh(F+F $)&cosh /& |cos p� } '� &cos p� $ } '� |

_d_p� (E ) d_p� (E$) d_p� $ (F ) d_p� $ (F $) dp� dp� $

Using |cos p� } '� &cos p� $ } '� |�(1&cos p� } '� )+(1&cos p� $ } '� ) we get

|8(!9 , '� , k0)|�D� 0(09 , 09 , k0) 4(2?)d&1 || _ sinh(E+E$)
cosh(E+E$)&cosh /&

_(1&cos p� } '� ) d_p� (E ) d_p� (E$) d_p� dp�

Using the decomposition of d_p� ( } ) and noting that the contributions
involving d_̂p� ( } ) are O(1) we have

|D� $0b(!9 , '� , k0)|

�4(2?)d&1 _O(1)+|
sinh 2w( p� )

cosh 2w( p� )&cosh /
(1&cos p� } '� ) Z( p� )2 dp� &

Taking into account that Z( p� )=(s2)�(2?)d&1+O(;) the last integral is
bounded by c;&1 |'� | 2. (c) Follows from (a) and (b) using |(D� $0)$ |2�
sup!9 [e&$ |!9 | �'� |D� $0(!9 , '� , k0) |e&$ |'� |].

With regard to the bounds on M we have, denoting by e1 , the unit
vector in the 1-direction,

Lemma 3.3. For small ; and uniformly for / # (0, 2m)

(a) M� (09 , 09 , k0)=O(;1�2),

(b) K(e1 , &e1 , 09 )=K(e1 , e1 , &e1)=O(;2).

Proof. (a) From Eq. (3.5) |K(09 , 09 , {)|�c1 |;�c2 |3 |{0 |+|{� | and as
M(09 , 09 , 0)=O(;) the result follows. (b) In terms of the x coordinates,
taking x� 1=09 , x2=e1 , x� 3=e1 , x� 4=09 , we have to bound K(09 , e1 , e1 , 09 )=
K(09 , e1 , 09 , e1). Using DD&1=I and D(09 , e1 , 09 , e1)=(s2) 2+O(;2) shows
that D&1(09 , e1 , 09 , e1)= 1

2(s2)&2 (1+O(;2)). Similarly D&1
0 (09 , e1 , 09 , e1)=

1
2(s2)&2 (1+O(;2)) and the result follows. We can realize (!9 , '� , {� )=
(e1 , e1 , &e1) as x� 1=0� , x2=e1 , x� 3=09 , x� 4=e1 so that the first equality in
(b) holds.
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Towards showing |M� D� $0 |$<1 we note that if a matrix operator on l$

has the kernel B(!9 , '� ) then the Hilbert�Schmidt norm (denoted by |B|$HS) is

\| d!9 d'� e2$ |!9 | |B(!9 , '� )|2 e&2$ |'� |+
1�2

We have

Lemma 3.4. |M� D� $0a |$�O(;1�4) uniformly for / # (0, 2m).

Proof. Consider f (!9 , k0)#�'� |M� (!9 , '� , k0)|. From Eq. (3.5) and
Lemma 3.3a if !9 =09 , f (!9 , k0)=O(;1�2) and if !9 {09 f (!9 , k0)=O(;1�4)
e&1�4(m&O(1)) |!� |. Thus the bound f (!9 , k0)=O(;1�2) e&1�4(m&O(1)) |!9 | holds for
all !9 # Zd&1 uniformly for / # (0, 2m). Since |D� $0a(!9 , '� , k0)|�|\|&1 we have

|M� D� $0a(!9 , '� )|�O(1) :
*9

|M� (!9 , *9 , k0)|�O(;1�8) e&1�4(m&O(1)) |!9 |

which shows that |M� D� $0a |$HS�O(;1�4) if O(1)<$<m�8.
Finally we have

Lemma 3.5. |M� D� $0b |$�O(;1�8) uniformly for / # (0, 2m).

Proof. Using Lemma 3.2b we have

|M� (k0) D� $0b(!9 , '� )|�O(1) ;&1 :
*9 {0

|K� (!9 , *9 , k0)| (1&$('� )) |'� |2

From Eq. (3.5) |K� (!9 , *9 , k0)|��{� |K(!9 , *9 , {� )|+O(;) e&1�2(m&O(1))[ |!9 |+|*9 | ] if
/ # (0, 2m). Thus R#�*9 {09 |K� (!9 , *9 , k0)|��*9 {09 �{� |K(!9 , *9 , {� )|+O(;3�2)
e&1�2(m&O(1)) |!9 |. Now � |*9 |�2 �{� |K(!9 , *9 , {� )|�O(;) e&1�2(m&O(1)) |!9 | so that
R�� |*9 |=1 �{� |K(!9 , *9 , {� )|+O(;) e&1�2(m&O(1)) |!9 |. Since min{� # Zd&1 |2{� +*9 |
=1 if |*9 |=1 we have � |*9 |=1 �{� |K(09 , *9 , {� )|�O(;). Similarly if |*9 |=1 and
if |!9 |=1 but !9 {\*9 , �{� |K(!9 , *9 , {� )|�O(;) e1�2(m&O(1)) |!� |. Now suppose
that !9 =&*9 , |!9 |=1. We can take !9 =e1=&*9 . Then �{� |K(e1 , &e1 , {� )|=
|K(e1 , &e1 , 09 )|+O(;3�2) e&1�2(m&O(1)) |!9 | and using Lemma 3.2b |K(e1 ,
&e1 , 09 )|=O(;3�2) e&1�2(m&O(1)) |e1 |. Thus

:
{�

|K(e1 , &e1 , {� )|=O(;3�2) e&1�2(m&O(1)) |e1 | (3.13)

Suppose next that !9 =&*9 , |!9 |=1. For instance take !9 =e1=*9 .
Then �{� |K(e1 , e1 , {� )|=|K(e1 , e1 , &e1)|+O(;3�2) e&1�2(m&O(1)) |!9 | and
using Lemma 3.2b (3.13) holds. Thus � |*9 |=1 �{� |K(!9 , *9 , {� )|�O(;)
e&1�2(m&O(1)) |!9 | holds for |!9 |=0, 1.
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Now we obtain a bound for |M� (k0) D� $0b |$HS . We have

|M� (k0) D� $0b | 2
$HS�O(1) :

!9 , '�

e2$( |!9 |&|'� | ) \ :
*9 {09

|K(!9 , *9 , k0)|2 (1&$('� )) |'� | 4+
�O(1) ;&2e&2$ :

!9

e2$ |!9 | _ :
|*9 =1|

:
{�

|K(!9 , *9 , {� )|&
2

+O(1) e&2$ :
!9

e&(m&O(1)&2$) |!� |

The last term is O(1) e&2$ and the first term is bounded by

O(1) ;&2e&2$ { :
|!� |=0, 1

O(;2) e&m&O(1)&2$) |!9 |

+ :
|!� |�2

O(;) e&(m&O(1)&2$) |!9 |=
�O(1) e&2$[1+O(1) e&1�2(m&O(1))]�O(1) e&2$

Thus |M� (k0) D� $0b(k0)|$HS�O(;1�8) uniformly for / # (0, 2m) and the result
follows.

We now give the proof of (b). The proof is the same as that for (a)
with the exception that easily obtained bounds different from those of
Lemma 3.2 are used for D� $0a and D� $0b . These bounds are given by, with
\>0,

Lemma 3.6. For sufficiently small ; and uniformly for / #
[mb+$#, 2m) there exists a constant c>0 such that

(a) |D� $0a(!9 , '� , k0)|�\&1(1+c&1),

(b) |D� $0b(!9 , '� , k0)|�(1+c&1) O(1)[1&$(!9 )][1&$('� )](1+;&1 |'� |2).

Proof. (a) From Eq. (3.12) we see that |D� 0(!9 , '� , /|�D� 0(09 , 09 , /),
D� 0(09 , 09 , /)>0 and monotone increasing. Thus, with I#[mb+$#, 2m),
inf/ # I (\D� 0(09 , 09 , /)&1)=\D� 0(09 , 09 , mb+$#)&1#c1�c and for the time
being we assume c>0. We have

|D� $0a(!9 , '� , /)|�(\D� 0(09 , 09 , /)&1)&1 \&1(\D� 0(09 , 09 , /)&1+1)

�\&1(1+c&1)

(b) From the proof of Lemma 3.2b

D� $0b(!9 , '� , k0)=&\(1&\D(09 , 09 , k0))&1 D� 0(09 , 09 , k0) B(!9 , '� , k0)
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with B(!9 , '� , k0)#D� 0(09 , 09 , k0)&1 8(!9 , '� , k0) and |B(!9 , '� , k0)|�O(1)(1+
;&1 |'� |2). Thus |D� $0b(!9 , '� , /)|�(\D� 0(09 , 09 , /)&1+1)(\D� 0(09 , 09 , /)&1)&1

|B(!9 , '� , /)|�(1+c&1) |B(!9 , '� , /)|. To complete the proof we show that
c>0. With /=2m&=, using the decomposition of d_p� ( } ) given by
Eq. (3.11) in Eq. (3.12), we can write \D� 0(09 , 09 , k0)#F1(;, =)+F2(;, =)+
F3(;, =) where F1(;, =) is the contribution of the product of the one-particle
contributions, etc. and Fi (=, ;)>0, i=1, 2, 3. Thus \D� 0(09 , 09 , k0)>F1(;, =).
F1(;, =) is analyzed in Section II of ref. 6 where it is shown that F1(;, =) is
monotone decreasing in = and jointly analytic in ; and =. Furthermore
F1(0, =)=#�(1&e&=), F1(0, =0)=1 where =0=&ln(1&#). Thus we have

c1>F1(;, =0&$#+O(;))&1=F1(0, =0&$#)&F1(0, =0)+O(;)#c

As F1(0, =0&$#)&F1(0, =0)=(1&#)(e$#&1)(1&(1&#) e$#)&1>0 it follows
that c>0 thus completing the proof.
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